

UPPSALA UNIVERSITET

Online learning in motion modeling for intra-interventional image sequences

GitHub

Niklas Gunnarsson^{1,2}, Jens Sjölund¹, Peter Kimstrand², Thomas B. Schön¹ ¹Uppsala University, ²Elekta Instrument AB

Motivation & Research Goals

Motion modeling, a model with possibility of estimating the motion at previous, current and future times t, is crucial for undersampled intra-interventional imaging [1]. Modeling the motion as the deformable vector field (DVF) enable transferring prior knowledge, like segmentations from a predefine image to the sequence.

(1)

Methods

The motion model [2] is defined in a low-dimensional space as a LG-SSM,

 $z_t | z_{t-1} \sim \mathcal{N}(z_t | A z_{t-1}, Q), \quad x_t | z_t \sim \mathcal{N}(x_t | C z_t, R),$

with analytical solutions to the inference problems. We can train the dimensionality reduction and the LG-SSM simultaneously using variational inference with the LG-SSM as a prior for a VAE, and improve the LG-SSM by maximizing the exact log-likelihood online [3], for new unseen sequences, i.e.,

$$\log p(\boldsymbol{y} \mid y_0) \geq \mathbb{E}_{q_{\phi}(\boldsymbol{x} \mid y_0, \boldsymbol{y})} \left[\log \frac{p_{\theta}(\boldsymbol{y} \mid y_0, \boldsymbol{\varphi})}{q_{\phi}(\boldsymbol{x} \mid y_0, \boldsymbol{y})} + \mathbb{E}_{p_{\gamma}(\boldsymbol{z} \mid \boldsymbol{x})} \left[\log \frac{p_{\gamma}(\boldsymbol{x}, \boldsymbol{z})}{p_{\gamma}(\boldsymbol{z} \mid \boldsymbol{x})} \right] \right], \quad \max_{\gamma_t} \log p_{\gamma_t}(x_{t-N:t}) = \max_{\gamma_t} \log \prod_{k=t-N}^t p_{\gamma_t}(x_k \mid x_{k-1})$$

Smoothing (Pre-trained model 15 ms)

Overlay of true sequence (magenta), and $\varphi_t = 0$, on top, and our esti-

Prediction (Online-trained model 75 ms)

Overlay of true sequence (magenta), and pre-trained model, on top, and

Prediction

mation given every 10th sample, on bottom (green).

online-trained, on bottom (green).

Conclusion

- The model performs similar registration accuracy as wellestablished registration methods, even in unobserved timesteps.
- Patient-specific motion adaptation is possible by updating a subset of the model parameters online.

Pre-trained	-10.5	7.04	0.81
Online	-6.3	5.54	0.85

References

[1] Real-time motion management in MRI-guided radiotherapy: Current status and AI-enabled prospects. E.Lombardo, J.Dhont, D.Page, et al. Radiotherapy and Oncology 2023

[2] Unsupervised dynamic modeling of medical image transformation. N.Gunnarsson, J.Sjölund, P.Kimstrand, T.B.Schön. 25th International Conference on Information Fusion (FUSION) 2022.

[3] Real-Time Convex Optimization in Signal Processing. J.Mattingley, S. Boyd. IEEE Signal Processing Magazine 2010.

